大数据重塑制造业

25.04.2018  12:05

当前我国绝大多数工业企业的大数据发展应用还处于起步阶段,对于为什么要用大数据、搜集哪些大数据、如何利用大数据仍然不明晰,滞后于消费互联网。工业场景的高度复杂使得工业大数据应用面临更多困难。诸如由于制造业作业场景非常复杂,不同行业所使用的设备和工艺差别很大,数据采集难度大;大规模的工业数据量对数据存储、传输提出了更高要求;企业上工业云意识薄弱造成数据孤岛,以及数据安全存在问题等。

传统制造业企业面临产能过剩、成本高、质量监管困难、产业链地位低等难题,能否抓住工业互联网这一机遇或将关乎其存亡。党的十九大报告明确提出,加快建设制造强国,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合,未来制造业企业转型路径已然清晰。

工业互联网对中国制造业的影响正在升级,那么具体体现在哪些方面呢?

大数据如何改变制造业

大数据重塑制造业的几种方式

1、精度更高。 成功制造取决于制造商继续具有竞争力的准确性。在大数据出现之前,最好的方法是投资更好的设备,如MIG焊机设备,或对员工进行更好的培训。然而,使用大数据,制造商可以使用计算机程序来优化流程,并更加巧妙地分析错误,从而防止这些错误产生。

2、产量更高。 大多数制造商购买原材料并制造成品,他们销售价格高过制造成本。在该系统中,制造商可以获得更高的收益(每个成品使用的原材料越少),企业的经营就更有利可图。新的大数据应用程序使制造商能够更好地了解其整体产量,并有机会改进其运营方法,生产产品获得更多的利润。

3、更好的预测。 供应链预测和需求预测是制造商的两个关键工具。他们可以确定制造商需要生产多少产品,何时淡季减缓生产进度,以及在仓库中的库存或出货量。大数据有助于制造商更好地掌握这种供应链关系的流程变化,因此可以在最有价值的生产条件下进行生产。

4、预测和跟踪供应商业绩。 制造商也可以使用大数据跟踪供应商的业绩。例如,如果供应商持续提供不合格的劣质产品,就可以准确计算出这种可能性,并确定选择新的供应商是否更加具有成本效益。

5、更高的可追溯性。 大数据还使制造商的流程更加透明和可追溯。制造商的原材料在生产过程中以及生产阶段有多少损失?给定批次产量多少,目前存储在哪里?运送需要多长时间,一旦需要运送,产品在哪里?大数据可帮制造商跟踪生产和交付的所有这些阶段,并提供对可能效率低的领域的洞察和分析。

6、高级自定义工作。 大数据显示,通过在以往的努力中获取数据并创造更好地利用原材料的方法,有可能创建高级定制工作。它也可以帮助制造商采取逆向工程,为熟悉的问题提出新的解决方案。

7、投资回报率和运营效率。 最后,大数据使制造商能够更深入地了解其运营的真正效率,以及升级时产生的投资回报率(ROI),例如新设备或新的广告策略。


让企业见到效益的技术才能真正算得上成功。邬贺铨院士在首届数字中国建设峰会大数据分论坛上与大家分享了大数据与企业数字化转型的一系列生动故事:苏州协鑫公司专注光伏切片,利用阿里开发的ET大脑分析0.2毫米厚度硅片长期积累的数据,从上千个生产参数中找出60个关键参数,通过优化生产流程,良品率提升1%,实现每年上亿元利润;联想集团利用其全球数据中心掌握的数据,与宝钢合作建立钢铁销量预测系统,通过机器学习和图谱分析找出关联,预测钢铁市场需求,预测精度92.2%,库存周期缩短20%,客户采购资金节约上亿元。

众多传统制造企业利用大数据成功实现数字转型表明,随着“智能制造”快速普及,工业与互联网深度融合创新,工业大数据技术及应用将成为未来提升制造业生产力、竞争力、创新能力的关键要素。有专家提出,制造业的大数据规模超过其他行业,且未来10年工业大数据增速要快于消费大数据。

大数据在工业领域的应用,实现了工业从研发、设计、生产、运营到服务全过程智能化,提升生产效率,降低资源消耗,提高产品质量。同时,数据驱动制造业生态变革,汇聚协作企业、产品、用户等产业链上的资源,通过平台开放共享,基于数据实现制造资源优化配置;还能实现产品、生产和服务创新,产生一系列新模式和新业态。《2017中国工业大数据产业发展概要》显示,2016年中国工业大数据市场规模已达150亿元,2020年预计将达到822亿元,在行业应用中,预计到2020年工业大数据的占比将达到6.64%。

下一步,工业大数据的核心目标将是围绕不断优化制造资源的配置效率,探索方法、路径与模式,实现更好的质量、更低的成本、更快的交付、更多的满意度,提高制造业全要素生产率。利用我国工业门类齐全、互联网和电子商务的比较优势,实现新工业革命时代的“换道超车”。

大数据产业发展明确四大重点
核心提示:在23日召开的首届数字中国建设峰会分论坛中小企业局
关于开展股权融资实操策略公益培训的通知
各中小微企业: 构建可持续发展的股权结构并持成都中小企业